Friday, April 15, 2011

Adaptive Immune Regulation in the Gut: T Cell–Dependent and T Cell–Independent IgA Synthesis



In mammals, the gastrointestinal tract harbors an extraordinarily dense and complex community of microorganisms. The gut microbiota provide strong selective pressure to the host to evolve adaptive immune responses required for the maintenance of local and systemic homeostasis. The continuous antigenic presence in the gut imposes a dynamic remodeling of gut-associated lymphoid tissues (GALT) and the selection of multiple layered strategies for immunoglobulin (Ig) A production. The composite and dynamic gut environment also necessitates heterogeneous, versatile, and convertible T cells, capable of inhibiting (Foxp3+ T cells) or helping (TFH cells) local immune responses. In this review, we describe recent advances in our understanding of dynamic pathways that lead to IgA synthesis, in gut follicular structures and in extrafollicular sites, by T cell–dependent and T cell–independent mechanisms. We discuss the finely tuned regulatory mechanisms for IgA production and emphasize the role of mucosal IgA in the selection and maintenance of the appropriate microbial composition that is necessary for immune homeostasis.